Dynamic range adaptation to spectral stimulus statistics in human auditory cortex.
نویسندگان
چکیده
Classically, neural adaptation refers to a reduction in response magnitude by sustained stimulation. In human electroencephalography (EEG), neural adaptation has been measured, for example, as frequency-specific response decrease by previous stimulation. Only recently and mainly based on animal studies, it has been suggested that statistical properties in the stimulation lead to adjustments of neural sensitivity and affect neural response adaptation. However, it is thus far unresolved which statistical parameters in the acoustic stimulation spectrum affect frequency-specific neural adaptation, and on which time scales the effects take place. The present human EEG study investigated the potential influence of the overall spectral range as well as the spectral spacing of the acoustic stimulation spectrum on frequency-specific neural adaptation. Tones randomly varying in frequency were presented passively and computational modeling of frequency-specific neural adaptation was used. Frequency-specific adaptation was observed for all presentation conditions. Critically, however, the spread of adaptation (i.e., degree of coadaptation) in tonotopically organized regions of auditory cortex changed with the spectral range of the acoustic stimulation. In contrast, spectral spacing did not affect the spread of frequency-specific adaptation. Therefore, changes in neural sensitivity in auditory cortex are directly coupled to the overall spectral range of the acoustic stimulation, which suggests that neural adjustments to spectral stimulus statistics occur over a time scale of multiple seconds.
منابع مشابه
Level-tuned neurons in primary auditory cortex adapt differently to loud versus soft sounds.
The responses of auditory neurons tuned to stimulus intensity (i.e., nonmonotonic rate-level responders) have typically been analyzed with stimulus paradigms that eliminate neuronal adaptation to recent stimulus statistics. This procedure is usually accomplished by presenting individual sounds with long silent periods between them. Studies using such paradigms have led to hypotheses that nonmon...
متن کاملStatistical context shapes stimulus-specific adaptation in human auditory cortex.
Stimulus-specific adaptation is the phenomenon whereby neural response magnitude decreases with repeated stimulation. Inconsistencies between recent nonhuman animal recordings and computational modeling suggest dynamic influences on stimulus-specific adaptation. The present human electroencephalography (EEG) study investigates the potential role of statistical context in dynamically modulating ...
متن کاملPower-law dynamics in an auditory-nerve model can account for neural adaptation to sound-level statistics.
Neurons in the auditory system respond to recent stimulus-level history by adapting their response functions according to the statistics of the stimulus, partially alleviating the so-called "dynamic-range problem." However, the mechanism and source of this adaptation along the auditory pathway remain unknown. Inclusion of power-law dynamics in a phenomenological model of the inner hair cell (IH...
متن کاملGain Control in the Auditory Cortex Evoked by Changing Temporal Correlation of Sounds.
Natural sounds exhibit statistical variation in their spectrotemporal structure. This variation is central to identification of unique environmental sounds and to vocal communication. Using limited resources, the auditory system must create a faithful representation of sounds across the full range of variation in temporal statistics. Imaging studies in humans demonstrated that the auditory cort...
متن کاملDynamic range adaptation to sound level statistics in the auditory nerve.
The auditory system operates over a vast range of sound pressure levels (100-120 dB) with nearly constant discrimination ability across most of the range, well exceeding the dynamic range of most auditory neurons (20-40 dB). Dean et al. (2005) have reported that the dynamic range of midbrain auditory neurons adapts to the distribution of sound levels in a continuous, dynamic stimulus by shiftin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 1 شماره
صفحات -
تاریخ انتشار 2014